1.

$$
\begin{gathered}
V_{\text {out }}(s)=\frac{-1}{s C_{2}}\left[\left(1 / R_{1}+s C_{1}\right) V_{\text {in }}(s)+V_{\text {out }}(s) / R_{2}\right] \\
\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=-\frac{R_{2}}{R_{1}} \frac{1+R_{1} C_{1} s}{1+R_{2} C_{2} s}
\end{gathered}
$$

The opamp has a frequency response

$$
A(s)=\frac{A_{0}}{1+\frac{s A_{0}}{\omega_{t a}}}
$$

Denoting the negative opamp input terminal
 voltage, V_{x}, we may write a nodal equation there as follows:

$$
\frac{V_{\text {in }}-V_{x}}{R_{1} \| 1 / s C_{1}}=\frac{V_{x}-V_{\text {out }}}{R_{2} \| 1 / s C_{2}}
$$

Substituting in $V_{\text {out }}=-A(s) V_{x} \Rightarrow V_{x}=-V_{\text {out }} / A(s)$:

$$
\frac{V_{\text {in }}+V_{\text {out }} / A(s)}{R_{1} \| 1 / s C_{1}}=\frac{-V_{\text {out }} / A(s)-V_{\text {out }}}{R_{2} \| 1 / s C_{2}}
$$

Using the expression for $A(s)$ above and rearranging yields:

$$
\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=-\frac{R_{2}}{R_{1}} \frac{A_{0}}{1+A_{0}} \frac{1+R_{1} C_{1} s}{1+R_{2} C_{2} s} \frac{1}{1+s / \omega_{\text {ta }}}
$$

2. KCL at $\mathrm{C}_{1}:-\mathrm{gm} 1 . \mathrm{V} 1-\mathrm{gm} 2 . \mathrm{V} 2+\mathrm{gm} 4 . \mathrm{Vo}=\mathrm{sC} 1 . \mathrm{V} 2$

KCL at C2: - gm3.V2 = sC2.Vo

$$
\mathrm{Ho}(\mathrm{~s})=\mathrm{Vo} / \mathrm{V} 1=\mathrm{gm} 1 . \mathrm{gm} 3 /\left(\mathrm{s}^{2} . \mathrm{C} 1 . \mathrm{C} 2+\mathrm{s} . \mathrm{gm} 2 . \mathrm{C} 2+\mathrm{gm} 3 . g m 4\right)
$$

$$
\mathrm{H} 1(\mathrm{~s})=\mathrm{V} 2 / \mathrm{V} 1=(-\mathrm{sC} 2 / \mathrm{gm} 3) \mathrm{Ho}(\mathrm{~s})=-\mathrm{sC} 2 . \mathrm{gm} 1 /\left(\mathrm{s}^{2} . \mathrm{C} 1 . \mathrm{C} 2+\mathrm{s} . \mathrm{gm} 2 . \mathrm{C} 2+\mathrm{gm} 3 . \mathrm{gm} 4\right)
$$

3. By interreciprocity, $\mathrm{Vo}=-\sum \mathrm{l}^{\prime}{ }_{k} \mathrm{~V}_{\mathrm{k}}$. Using Bashkow's method, we assume $\mathrm{I}^{\prime}{ }_{1}=1 \mathrm{~A}$, and also to simplify the calculations, $R=1$ (this doesn't change the voltage gain). Then $V_{a}{ }^{\prime}=2, I_{2}{ }^{\prime}=2, I_{b}{ }^{\prime}=3, V_{b}{ }^{\prime}=5 I_{3}{ }^{\prime}=5, I_{c}{ }^{\prime}=8, V_{c}{ }^{\prime}=13, I_{4}{ }^{\prime}=13, I_{d}{ }^{\prime}=21$. Hence, the scale factor is $-1 / 21$, and $\mathrm{V}_{\mathrm{o}}=(1 / 21)[1 \times 1+2 \times 1+5 \times 2+13 \times 2]=39 / 21 \sim$ 1.857 V .

